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Abstract

Many methods have been developed for the design of a single-degree-of-freedom (SDOF) absorber to
damp SDOF vibration. Yet there are few studies for the case where both the absorber and the main system
have multiple degrees of freedom. In this paper, an efficient numerical approach based on the descent-
subgradient method is proposed to maximize the minimal damping of modes in a prescribed frequency
range for general viscous or hysteretic multi-degree-of-freedom (MDOF) tuned-mass systems. Examples
are given to illustrate the efficiency of the minimax method and the damping potential of MDOF tuned-
mass dampers (TMDs). The performance of minimax, H2, and HN optimal TMDs are compared. Finally,
the results of an experiment in which a 2-DOF TMD is optimized to damp the first two flexural modes of a
free–free beam are presented.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

A tuned-mass damper (TMD), or dynamic vibration absorber (DVA), is an efficient passive
vibration suppression device comprising a mass, springs, and (usually) viscous or hysteretic
dampers. Since proposed in 1909, they have been widely used in machinery, buildings, and
structures. The first theoretical investigation of TMD design was carried out by Ormondroyd and
Den Hartog in 1928, and the details can be found in the text by Den Hartog [1]. By balancing the
two fixed points in the frequency response, Den Hartog found the optimal tuning ratio f and
damping ratio z for an auxiliary single-degree-of-freedom (SDOF) mass attached to an undamped
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SDOF system to be

f ¼
1

1þ m
; z ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3m

8ð1þ mÞ

s
; ð1Þ

where m is the mass ratio. Later, SDOF systems with some inherent damping were also examined
and various tuning rules were proposed in the time and frequency domains [2,3], including H2 and
HN optimal tunings [4,5].
Warburton [6] investigated the optimum tuning parameters for a SDOF TMD to minimize the

response of a 2-DOF main system by treating the main system as an equivalent SDOF system; he
also examined the effect of the distribution of natural frequencies on the optimum parameters.
Ding [7] studied the vibration magnitude through a transition matrix and gave some general
guidance for design of SDOF TMDs to absorb narrowband vibration of multiple-degree-of-
freedom (MDOF) systems. Vakakis and Paipetis [8] investigated the effect of SDOF TMDs on the
first mode of a MDOF primary system. Sadek et al. [9] found that a system comprising a SDOF
structure and an optimized TMD has two modes with equal damping ratios greater than the
average damping in the decoupled structure and TMD; for a SDOF TMD attached to a MDOF
structure, they used an equivalent mass ratio based on unit modal participation.
To damp more than one mode of a MDOF primary system, usually several SDOF TMDs are

used, and if the modal frequencies are well separated, the design approach based on equivalent
SDOF systems works well. To achieve better performance, several direct design methods have
been proposed. Snowdon et al. [10] developed a vibration absorber in the form of two crossed
beams with masses at their ends. By minimizing the displacement response over certain
frequencies with a time-efficient gradient-based optimization algorithm, Kitis et al. [11] designed
two SDOF TMDs simultaneously to damp the first two modes of a cantilever beam. Using the
simplex algorithm to minimize the peak of the frequency response over a certain frequency range,
Rice [12] also obtained the optimal parameters (position, stiffness, and damping) of two SDOF
TMDs for a cantilever beam. Rade and Steffen [13] employed a substructure-coupling technique,
and by minimizing the performance obtained from a weighted transfer matrix at a set of discrete
frequencies, obtained the optimal parameters of two SDOF TMDs attached to a free–free beam.
Abe and Fujino [14] studied the design of several small TMDs tuned to a single resonance of a
structure. Some sub-optimal LQG/H2 methods have also been used to design SDOF TMDs for
MDOF main systems [15,16]. Using genetic algorithms to minimize the H2 norm, Arfiadi and
Hadi [17,18] designed an H2 optimal SDOF TMD for MDOF building structures.
Whenever we add a body to a structure, it will have six degrees of freedom relative to the

structure. By taking full advantage of the inertia of the body, we can damp as many as six modes,
or make the system more robust or compact. However, there are few studies and available
approaches on the use of more than one DOF of a body to damp either a SDOF or MDOF
structure, except for the simple case where the motions are decoupled in space [19]. Dahlbe [20]
showed that a two-segment cantilever beam can be more effective than a SDOF TMD for
suppression of SDOF vibration. Beams or plates have been used as absorbers to suppress
vibration in one mode of a beam or plate based on Den Hartog’s method and the concept of an
equivalent modal mass [21–23]. Yamaguchi [24] damped two modes of a clamped–clamped beam
by attaching a double-cantilever beam with a spring–dashpot connection. To the authors’
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knowledge, these are the only studies where both the damper and main system have more than
one coupled mode. The methods of Kitis et al. [11] and Hadi and Arfiadi [17] can be extended to
design MDOF TMDs for MDOF primary systems. Zuo and Nayfeh [25,26] have also applied
decentralized control techniques (H2 and HN optimization) to design MDOF TMDs and other
passive mechanical systems.
In this paper, we use the descent-subgradient method to maximize the minimal damping in a

prescribed frequency range for a general structure to which is attached an MDOF TMD or
multiple SDOF TMDs. Taking the location and inertias of the absorbers as well as the locations
of the springs and dampers connecting the absorbers to the structure as fixed, we cast TMD design
as an optimization problem in the framework of decentralized static output control in state space.
Next, we introduce some key concepts of minimax optimization and propose an optimization
method based on the descent-subgradient method. Design examples are given to compare the
performance obtained from minimax optimization to those obtained from H2 and HN

optimization and to compare the performance obtained using an MDOF TMD to that obtained
using multiple SDOF TMDs. Finally, we present the results of an experiment in which a 2-DOF
TMD is designed to damp the first two flexural modes of a free–free beam.

2. Formulation

If the geometry and inertia of a passive mechanical system are fixed, optimal selection of the
stiffness and damping elements of the mechanical system can be cast as a static decentralized control
problem in state space by treating the springs and dashpots as local position and velocity feedback
elements [26]. To optimize a TMD of a fixed configuration, our task is to select the parameters of
the stiffness and damping (which can be either viscous or hysteretic), to maximize some measure of
the performance. Replacing the effect of the connections between the absorber mass and the original
system with the control force vector u; we can write the equation of motion in matrix form

Mq .q þ Cq ’q þ Kqq ¼ Bqu; ð2Þ

where Mq; Cq; and Kq are, respectively, the mass, damping and stiffness matrices of the system with
the connections between the absorber mass and the original system removed. Using geometric
information, we can write the relative displacement output vector between connection points as

p ¼ Cpq:

By defining the state vector x as ½q0; ’q0�0 and the output vector y as the relative displacement and
velocity ½p1; ’p1; p2; ’p2;y�0 (where primes indicate matrix transposition), we obtain the state-space
description

’x ¼ Ax þ Bu; y ¼ Cx: ð3Þ

The matrices A; B; and C are given by

A ¼
0 I

�M�1
q Kq �M�1

q Cq

" #
; B ¼

0

M�1
q Bq

" #
; C ¼ T

Cp 0

0 Cp

" #
; ð4Þ

where I is identity matrix and T is a matrix to reorder ½q1; q2;y; ’q1; ’q2;y�0 into ½q1; ’q1; q2; ’q2;y�0:
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As can be determined from Fig. 1, the ‘‘closed-loop’’ system is described by

’x ¼ ðA þ BFCÞx; ð5Þ

where F is a static block-diagonal feedback matrix whose elements are the design parameters: the
stiffness and damping of the connections between the tuned mass and the original system. For a
viscously damped system, the feedback matrix usually takes the form

F ¼

k1 c1

k2 c2

y y

km cm

2
6664

3
7775:

For a hysteretically damped system, the cn are zero and the kn are augmented with a loss factor Zn

so that they take the form knð1þ iZn sgnoÞ; where i is the imaginary unit.
If we know the disturbance inputs and critical outputs, we can use standard control-design

techniques (such as decentralized H2 or HN optimization) to design the TMDs. However, the
disturbances and performance measures are often difficult to define, and it becomes more
practical to maximize the minimum damping in a prescribed frequency range ½ol ;oh�: Thus, we
obtain a minimax problem:

max
FAO

min
iAI

ðziðFÞÞ
� �

I ¼ fijolpoipoh;oi ¼ jeigðA þ BFCÞjg; ð6Þ

where O is the set of F satisfying the block-diagonal constraint. To solve this minimax problem,
we introduce the concept of a subgradient and its application to non-smooth optimization.

3. The subgradient and non-smooth optimization

It is well known that gradient-based algorithms are much more efficient than non-gradient-
based algorithms (such as the simplex algorithm) in constrained or unconstrained optimization
[27]. However miniAI ðziðF ÞÞ is a non-smooth function, so we cannot use the well-known conjugate
gradient or Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm. Non-smooth optimization
problems have been examined extensively after the early studies of Polyak [27–29] and Dem’yanov
[30,31].

ARTICLE IN PRESS

A  B
C  D

u y

F: a block 
diagonal 
gain matrix

Fig. 1. Block diagram showing a TMD system formulated as a feedback controller.
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The subgradient or e-subgradient plays an important role in non-smooth optimization, similar
to that of the gradient in smooth optimization. Given a convex function f : Rn-R; a vector d is
called a subgradient of f at x if

f ðzÞXf ðxÞ þ d 0ðz � xÞ; 8zARn: ð7Þ

The set of all subgradients of f at x; denoted by @f ðxÞ; is called the subdifferential of f at x: It is a
nonempty, convex and compact set. The concepts of a subgradient and subdifferential are
illustrated in Fig. 2 for the case where both f and x are scalars: from any point on a convex
function, one can march along a line of any slope contained in the subdifferential without passing
above the function f :
We can similarly define the subgradient for a concave function. From the definition, we can see

that any subgradient is an ascent direction for a convex function f : Rn-R: So arbitrarily selected

subgradients—combined with a properly chosen step size [29]—will yield a descent sequence and
converge to a stationary point or e-stationary point. For the non-smooth function maxiAI fiðxÞ or
miniAI fiðxÞ; where I is a finite index set, it is easy to find the entire subdifferential (set of all
subgradients), and the steepest subgradient according to the following two theorems.
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Fig. 2. Illustration of the subdifferential of a scalar non-smooth function of a scalar argument: (a) a function f ðxÞ and
(b) its subdifferential @f ðxÞ:
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Theorem 1 (Danskin’s [28]). If fiðxÞ : Rn-R is smooth for all iAI ; then the subdifferential of

f ðxÞ ¼ maxiAI fiðxÞ is

@f ðxÞ ¼ convfrxf%iðxÞj%iA %IðxÞg; ð8Þ

where %IðxÞ ¼ f%ijf%iðxÞ ¼ maxiAI fiðxÞg; rxf%iðxÞ is the gradient of f%iðxÞ at x; and convð�Þ denotes a
convex hull.

Theorem 2 (Dem’yanov and Vasil’ev [31]). A necessary condition for a continuous non-smooth (not
necessarily convex) function f ðxÞ : Rn-R to attain a minimum at x� is that 0A@f ðx�Þ: If 0e@f ðxÞ;
then the direction

�arg min
dA@f ðxÞ

jjdðxÞjj

is the steepest descent direction. (For a convex function, the condition above is sufficient.)

Theorems 1 and 2 suggest an approach for standard minimax problems (or max–min
problems): Start with an arbitrary initial point x0; evaluate the subdifferential @f ðx0Þ; use a one-
dimensional optimization method to update x0 in the direction of steepest descent given by
Theorem 2, and then repeat the procedure. One might expect the limit point of this descent
sequence to be a minimal point of the non-smooth function. However, due to the lack of
smoothness, the limit point of the sequence generated by the above algorithm based on Theorem 2
may not even be a stationary point of f ðxÞ: (An example is given by Dem’yanov [30].) Moreover,
since any numerical algorithm based on the subgradient must be carried out in discrete steps, it is
practical to introduce a scalar e and define the e-subgradient as follows:
Given a convex function f : Rn-R; for a scalar e > 0; we say that a vector d is an e-subgradient

of f at x if

f ðzÞ þ eXf ðxÞ þ d 0ðz � xÞ; 8zARn: ð9Þ

The set of all e-subgradients of f at x; denoted by @ef ðxÞ; is called the e-subdifferential of f at x:
The following theorem is the basis of an e-subgradient algorithm for minimax problems:

Theorem 3 (Dem’yanov [30]). If e > 0; Ie ¼ fjj½maxiAI fiðxÞ� � fjðxÞoeg; and @ef ðxÞ ¼
convfrxfjðxÞjjAIeðxÞg is not empty, then the search direction

�arg min
dA@ef ðxÞ

jjdðxÞjj

and one-dimensional minimizing step size will yield a sequence whose limit point is an e-stationary point of

f ðxÞ ¼ maxiAI fiðxÞ; which is an approximation to a stationary point with absolute error of at most e:

4. Minimax algorithm for TMD design

With the above background of non-smooth optimization, we return to the TMD problem (6):
determine the structure-constrained feedback gain F that maximizes the minimal damping in a
certain frequency range. Our algorithm is based on Theorems 1, 3 and the following eigenvalue
sensitivity formula:

ARTICLE IN PRESS

L. Zuo, S.A. Nayfeh / Journal of Sound and Vibration 272 (2004) 893–908898



Given a real-coefficient dynamic system ’x ¼ ðA þ BFCÞx; the sensitivity of the jth eigenvalue lj

to changes in the klth element of F is

@lj

@Fkl

¼
w0

jbkclvj

w0
jvj

; ð10Þ

where vj and wj are the jth right and left eigenvectors of A þ BFC; respectively, bk is the kth
column of B; and cl is the lth row of C:
For systems with viscous damping, the matrices A;B;C; and F are real and the eigenvalues of

A þ BFC are symmetric with respect to the real axis in the complex plane. We need only consider
the poles and associated damping in the second quadrant. The damping ratio is

zjðF Þ ¼
�ReðljÞ

jlj j
: ð11Þ

Using the gradient chain rule, we write the sensitivities of the damping ratios with respect to the
design parameters as

@zj

@Fkl

¼
@zj

@lj

@lj

@Fkl

: ð12Þ

We now propose the following minimax algorithm for TMD design:

1. Choose the initial parameters—a block diagonal matrix F :
2. Solve for the steepest-descent subgradient drtðF Þ: Evaluate the eigenvalues and eigenvectors of

A þ BFC; find the set of indexes corresponding to modal frequencies whose damping ratio is
close to the minimal damping inside the specified frequency band:

IeðFÞ ¼ fj j zjðF Þ �min
iAI

ziðFÞpeg: ð13Þ

Compute the gradient of the damping rFzjðF Þ with respect to the free design variables in F

for all jAIeðF Þ using (10) and (12). We obtain a convex hull @ezðF Þ: Then solve a minimization
problem to obtain the steepest-descent subgradient

drtðF Þ ¼ �arg min
dA@ezðF Þ

jjdðFÞjj: ð14Þ

If drtðF Þ ¼ 0; stop; otherwise go to step 3.
3. One-dimensional minimization: Search in the direction drtðF Þ to determine the step size a

which maximizes the function

min
iAI

ziðF þ a drtðF ÞÞ:

Update F with F þ a drtðF Þ: Then go to step 2.

Remark 1. To find the direction of steepest descent drtðFÞ as defined by Eq. (14), we must solve a
convex constrained linear least-squares problem:

min
dA@Ef ðFÞ

jjdðF Þjj ¼ min
bjX0;

P
j
bj¼1

X
jAIe

bjrF fjðFÞ

�����
�����

�����
�����: ð15Þ
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Such problems can be solved efficiently using a standard code, such as the lsqlin function in the
Matlab Optimization Toolbox.

Remark 2. Generally, gradient-based methods are not finitely convergent. So typically we will
stop computation when jjdrtðF Þjj or ajjdrtðF Þjj becomes sufficient small.

Remark 3. To make the approach more practical, we can also maximize the weighted minimal
damping in a selected frequency range.

Remark 4. For a practical design, negative stiffness or damping are hard to construct. So in the
case where there is a kinematic redundancy in the connection of the TMD, we should replace Fkl

with F2
kl : More generally, if we would like to constrain some parameter Fkl to be in some

physically achievable internal ½r1; r2�; we can specify Fkl with one parameter r:

Fkl ¼ 1
2ðr1 þ r2Þ þ 1

2ðr2 � r1Þ sin r

and evaluate the damping sensitivity with respect to the design parameter r:

Remark 5. For hysteretically damped systems, the matrices A and F are complex. There is little
published work on optimization of such systems, though they are important in practice. To treat
systems with hysteretic damping, we need only extend the eigenvalue sensitivity formula to the
case of complex coefficients:

@lj

@ReðFklÞ
¼

w0
jbkclvj

w0
jvj

;
@lj

@ImðFklÞ
¼ i

w0
jbkclvj

w0
jvj

; ð16Þ

where i is the imaginary unit. Using these equations we can compute the sensitivity of the modal
damping to changes in the real and imaginary parts of the design parameters in F :

5. Design examples

5.1. Two-DOF TMD: minimax, H2, and HN optima

Consider a 2-DOF primary system that can translate in the x direction and rotate about the
z-axis as shown in Fig. 3.
Our task is to choose k1; k2; c1; and c2 to damp the two modes of the main system. With initial

guesses of k1 ¼ k2 ¼ 500 N=m and c1 ¼ c2 ¼ 50 N s=m; the minimax algorithm converges to
k1 ¼ 6038:93 and k2 ¼ 2679:96 N=m along with c1 ¼ 11:74 and c2 ¼ 5:94 N s=m; producing a
system with minimal modal damping of 8.77%.
To perform H2 and HN optimization of the system, we take vertical displacement of the

ground as the disturbance, and the displacement and rotation of the main mass gravity center as
the cost output. The closed loop has one input and two outputs. We use gradient-based
optimization to minimize the system H2 norm and linear matrix inequality (LMI) based iteration
to minimize the system HN norm as detailed by Zuo and Nayfeh [26]. The closed-loop
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performances produced by the minimax, H2, and HN optimizations are compared in Table 1 and
the frequency responses are shown in Fig. 4.
From Table 1 we see that the minimax design yields a system with highest damping but takes no

account of the system zeros, the H2 design will produce a system with the smallest output variance
under white noise input, and the HN optimization achieves smallest peak magnitude for the
worst-case sinusoidal input. So whether we should use minimax, H2, or HN optimization for the
design will depend on the performance requirements and our knowledge of the disturbances. In
many cases it is difficult to define the disturbance inputs and the critical outputs and the minimax
approach becomes somewhat more practical than input–output-based design. Moreover, unlike
the H2 and HN approaches, the minimax method is applicable to marginally stable systems or
hysteretically damped systems.

5.2. Single MDOF vs. multiple SDOF TMDs for a free–free beam

Consider flexural, planar vibration of the free–free beam shown in Figs. 5 and 6. Its length is
1:829 m; its bending stiffness EI is 1:636� 105 N m2; its mass per unit length is 23:245 kg=m: Our
goal is to damp the first three flexural modes. In order to describe the system in finite-dimensional
state space, we discretize the beam into 12 segments with 13 nodes, each of which has three
degrees of freedom in the plane. Note that this system is marginally stable due to the presence of
rigid-body modes, and hence we can’t use decentralized H2 or HN optimization for the design.
Fig. 5 shows the set up of a 3-DOF TMD. Attached to the beam is a small rigid-body absorber,

whose mass is 4% of that of the beam and whose length is 10% of that of the beam. It is mounted
to the beam via three damped flexures at 55:4 mm from the neural axis of the beam. Fig. 6 shows
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Fig. 3. Sketch of the 2-DOF system with a 2-DOF tuned-mass damper: L1 ¼ 0:25 m; L2 ¼ 0:2 m; M ¼ 5 kg; I ¼
0:1 kg m2; K1 ¼ 50 kN=m; K2 ¼ 80 kN=m; Md ¼ 0:05 M; and Id ¼ 0:035 I:

Table 1

Comparison of the performance obtained with the 2-DOF TMD under various designs: minimax, H2, and HN

optimization

H2 norm HN norm Modal damping (%)

H2 optimization 55.6620 11.9748 4.28, 5.13, 11.2, 3.77

HN optimization 56.4402 11.0721 5.41, 6.53, 16.5, 3.81

Minimax 62.1083 16.4614 8.77, 8.77, 13.5, 8.77
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three SDOF TMDs attached at the same location as the center of mass of the three DOF TMD.
Each of the three dampers has the a mass equal to 1.333% of that of the beam.
For multiple SDOF TMDs, we begin by carrying out the traditional design by computing the

equivalent main mass at the connection point for each mode based on the modal energy relations
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Fig. 6. Three SDOF TMDs for a 39-DOF discretized free–free beam.
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[32], and then choose the parameters for each TMD using Den Hartog’s method by ignoring the
coupling of other modes. The achieved damping ratios for the first three flexural modes of beam
are shown in the first column of Table 2. Next, we cast the system as an 84 order plant with
decentralized feedback and optimize the stiffness and damping of each connection using the
minimax algorithm with weightings of 1.0:1.1:1.6 for the first three bending modes. The results for
the SDOF TMDs and MDOF TMD are shown in the second and third columns of Table 2. For
the MDOF TMD we also use the minimax algorithm to determine the optimal parameters for the
case of hysteretic dampers and provide the results in the fourth column of Table 2.
The frequency responses from the exogenous force w to the collocated displacement are

compared in Fig. 7. The minimax algorithm yields TMDs with a performance much better than
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Table 2

Comparison of the damping ratios (%) obtained with a 3 DOF TMD and three SDOF TMDs for the free–free beams of

Figs. 5 and 6

Mode 3 SDOF TMDs 3 SDOF TMDs 3 DOF TMD 3 DOF TMD

traditional minimax minimax minimax

viscous viscous viscous hysteretic

1 3.38 7.22 6.78 8.74 10.81 10.81 10.67 10.67

2 2.44 5.92 6.17 6.17 9.83 9.92 9.70 9.71

3 1.52 4.62 4.38 6.22 6.79 7.12 6.67 6.67
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Fig. 7. Frequency response of the free–free beam: undamped (dashed), three SDOF TMDs traditional design (dash–

dot), three SDOF TMDs minimax design (thinner solid), three-DOF viscous TMD minimax design (thicker solid),

three-DOF hysteretic TMD minimax design (dots).
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the traditional design and the MDOF TMD performs better than multiple SDOF TMDs located
at the same position. The performances of the optimal hysteretic and viscous TMDs are almost
identical.
The location of the TMDs as well as the distribution of the mass among the multiple SDOF

TMDs can have a significant effect on the performance. In the results shown in Table 2, the
damping attained by the SDOF absorbers in the second bending mode of the beam has attained
its (weighted) maximal value; if the mass of the corresponding absorber were increased at the
expense of the other absorbers, the overall performance could be increased. If we place the three
SDOF TMDs at the very tip of the beam, the minimax algorithm produces a maximized minimal
damping of 9.78%, slightly smaller than the value of 10.81%, achieved by the MDOF TMD setup
in Fig. 5.

5.3. Experiment: 2-DOF TMD for a free–free beam

Consider flexural, planar vibration of another free–free steel beam shown in Fig. 8.
Its cross section is 1:5� 6 in2 and its length is 72:7 in: At one end of beam, we attach a 2 DOF

steel block whose mass is 4% of that of beam, and whose dimensions are 7:8� 3:3� 1:0 in3: The
distance between the two damped mounts is 7:2 in: In contrast to the case presented in the
preceding section, here the absorber is constrained from moving in the axial direction and hence
has only two DOF. Our goal is to maximally damp the first two flexural vibration modes by
optimal selection of the stiffness and damping in each mount.
Constraint of the movement of the beam in the axial direction will not influence the linearized

bending model, and further the connections of TMD and beam are in x direction. Thus we take
each node of the discretized beam to have only two degrees of freedom and obtain a 28-DOF
system, which is cast as a 56 order plant with decentralized feedback. The minimax algorithm
arrives at the optimal parameters

Spring (N/m) Damper ðN s=mÞ
1 1:33� 105 165.9
2 8:60� 105 326.7

for a broad range of initial guesses. These parameters yield a system whose first four non-zero
resonance frequencies and damping ratios are given in Table 3.
Based on the optimal parameters, we design spring–dashpot pairs in the form of flexures whose

stiffness and damping are independently adjustable, as shown in Fig. 9. We size the blades to have
a bending stiffness initially lower than that required by our nominal design and adjust the stiffness
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Fig. 8. Two-DOF TMD for a 26-DOF discretized free–free beam.
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to the desired value by increasing the tension on the blade via the adjusting screw. The damping is
produced by a viscous fluid that is sandwiched between the plunger and cup, and the damping
coefficient is adjusted by moving the cup in the vertical direction.
In the experiment we hang the beam using latex tubing so as to approximate a free–free beam,

and use an impact hammer and accelerometer to measure transfer functions. One typical transfer
function (from force to acceleration at node 1 in Fig. 8) is shown in Fig. 10, where we plot the
predicted and measured responses with and without the damper. As one would expect, the system
initially exhibits almost no damping, with zE10�4 for each of the first three modes. With the
damper installed and properly tuned, each of the first two modes of the beam exhibit damping
very close to that predicted.

6. Conclusions

Multi-degree-of-freedom (MDOF) tuned-mass-dampers (TMD) can be tuned to damp more
than one mode of a primary system efficiently. In this paper, the problem of designing a MDOF
TMD attached to a MDOF primary system is formulated as a decentralized static-output
feedback problem. Then an e-subgradient algorithm is presented that maximizes the minimum
damping over a prescribed frequency range in order to obtain the optimal parameters of the
MDOF TMD. In this approach, we can impose constraints on the ranges of the parameters and
design for marginally stable and hysteretically damped systems directly.
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Table 3

Resonant frequencies and damping ratios achieved by minimax optimization of the two-DOF damper on a free–free

beam

Mode Damping ratio (%) Frequency (Hz)

1 11.9 56.2

2 9.94 57.2

3 9.94 162

4 9.94 162

blade
plunger

cup

adjustment 
screw

Fig. 9. Photograph of a flexure with adjustable stiffness and damping.
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The minimax algorithm efficiently arrives at an optimum design for MDOF TMDs as well as
multiple SDOF TMDs. It yields generally more damping than H2 or HN optimizations, which
produce designs with smaller responses for a specific set of disturbance inputs. The H2 and HN

optima feature some cancellation of the response of the various modes, whereas the minimax
optimum simply maximizes the minimal damping. For the particular example of a free–free beam,
we show that a MDOF TMD can be designed to provide higher damping in the first three flexural
modes than can be attained by multiple SDOF TMDs at the same location and of the same total
mass as the MDOF TMD. Finally, the experiment presented in this paper shows that it is
practical to build a multi-DOF TMD that closely matches the ideal model.
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